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Abstract 
The exponential growth of the Internet of Things (IoT) has resulted in massive volumes of 
heterogeneous data that require efficient, real-time signal processing. Traditional cloud-centric 
architectures face significant challenges, including high latency, bandwidth limitations, and energy 
overheads, which hinder their ability to support latency-sensitive applications. This research 
investigates the integration of artificial intelligence (AI) with edge computing as a transformative 
framework to address these limitations. Using a testbed of heterogeneous IoT devices equipped with 
lightweight deep learning models and energy-efficient accelerators, experimental results were 
compared across three deployment modes: edge (local inference), fog (partial offloading), and cloud 
(full offloading). Statistical analyses revealed that edge devices consistently achieved the lowest 
latency (~35 ms), the highest bandwidth efficiency (~3 KB per sample), and favorable energy profiles, 
while maintaining near-cloud classification accuracy (~94%). Fog configurations offered intermediate 
performance, whereas cloud deployment, while slightly improving accuracy (~96%), imposed 
substantial penalties in latency, bandwidth, and energy. The findings validate the hypothesis that AI-
enhanced edge devices can achieve real-time intelligence with minimal resource overhead, supporting 
applications in healthcare, autonomous systems, industrial automation, and smart environments. 
Practical recommendations derived from the study emphasize the adoption of model compression, 
hardware-software co-design, hybrid deployment strategies, and integrated security mechanisms to 
optimize edge performance. Overall, this research demonstrates that AI-enabled edge intelligence is not 
merely a complementary alternative but a pivotal advancement toward resilient, efficient, and privacy-
preserving IoT ecosystems. 
 
Keywords: AI-enhanced edge devices, real-time signal processing, Internet of Things (IoT), latency 
reduction, bandwidth efficiency 

 

Introduction 
The integration of artificial intelligence (AI) with edge computing has emerged as a 
transformative paradigm for enabling real-time signal processing in Internet of Things (IoT) 
networks. With billions of IoT devices generating heterogeneous data streams, centralized 
cloud computing architectures face limitations in terms of latency, bandwidth constraints, 
and energy efficiency [1, 2]. Edge computing addresses these challenges by processing data 
locally at the device or near the data source, thereby minimizing delays and reducing 
dependency on remote servers [3, 4]. Recent advances in lightweight AI models and 
specialized hardware accelerators such as Tensor Processing Units (TPUs) and Graphics 
Processing Units (GPUs) optimized for embedded systems have made it feasible to deploy 
machine learning (ML) algorithms directly on edge devices [5, 6]. This convergence of AI and 
edge computing is particularly critical for latency-sensitive applications such as autonomous 
vehicles, industrial automation, smart healthcare, and real-time environmental monitoring [7, 

8]. Despite these advancements, a major problem persists: traditional IoT edge devices often 
lack the computational and energy resources necessary to execute complex signal processing 
tasks with high accuracy under real-time constraints [9, 10]. Furthermore, issues of data 
privacy and security intensify when raw data must be transmitted to the cloud for processing, 
highlighting the urgency of AI-enabled local computation [11, 12]. Therefore, the objective of 
this research is to design and evaluate AI-enhanced edge devices capable of efficiently 
performing real-time signal processing within IoT networks while maintaining energy 
efficiency, scalability, and robustness against network disruptions [13, 14]. Specifically, this 
study aims to explore optimized deep learning models, edge-aware deployment strategies, 
and hardware-software co-design approaches to bridge the  
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performance gap between cloud and edge environments [15, 

16]. The hypothesis driving this work is that by integrating 
lightweight AI models with energy-efficient hardware 
accelerators, AI-enhanced edge devices can achieve near-
cloud level accuracy and responsiveness in signal 
processing tasks while significantly reducing latency and 
bandwidth consumption [17-19]. 

 

Materials and Methods 

Materials 
The study was conducted using a testbed of heterogeneous 
IoT edge devices consisting of Raspberry Pi 4 units, 
NVIDIA Jetson Nano modules, and ARM Cortex-M4 
microcontrollers configured to represent typical low-power 
IoT hardware. Each device was integrated with lightweight 
deep learning frameworks such as TensorFlow Lite and 
PyTorch Mobile for local inference [5, 6]. Signal datasets 
were sourced from publicly available repositories 
representing real-world IoT applications, including 
biomedical signals, environmental monitoring data, and 
industrial sensor outputs [7, 9]. The edge devices were 
connected via a 5G-enabled network infrastructure to 
emulate latency-sensitive scenarios [10]. Hardware 
accelerators such as GPUs and TPUs were selectively 
deployed to enhance computational efficiency and evaluate 
performance trade-offs across different platforms [15, 17]. 
Security configurations were implemented using 
blockchain-enabled authentication and lightweight 
encryption mechanisms to ensure data privacy and integrity 
during processing [9, 11]. 

 

Methods 
The methodology involved deploying optimized deep 
learning models (CNNs, RNNs, and hybrid architectures) on 
the edge devices to process incoming IoT data streams in 
real time [6, 15, 18]. Model compression techniques, including 
quantization and pruning, were applied to reduce 
computational overhead while maintaining predictive 
accuracy [5, 16]. Latency, bandwidth consumption, and 
energy efficiency were measured under different 
deployment strategies such as local inference, partial 
offloading to fog nodes, and cloud-only configurations [3, 4, 

13]. Benchmarking tools and statistical methods were used to 
compare the trade-offs among these approaches, with 
repeated trials ensuring reliability of outcomes [14, 19]. 
Hypothesis testing was carried out by applying ANOVA 
and regression analyses to determine the statistical 
significance of performance differences across device 
configurations [12]. The evaluation framework emphasized 
three primary metrics: real-time responsiveness, accuracy of 
signal classification, and energy efficiency, ensuring 
alignment with the objectives of AI-enhanced edge 
intelligence in IoT networks [1, 2, 17]. 

 

Results 

Statistical outcomes and interpretation 
Latency (ms). A one-way ANOVA indicated a significant 
effect of deployment mode on end-to-end latency (Edge < 
Fog < Cloud; p<0.001 in Table 2). Post-hoc pairwise tests 
(Table 3) confirmed all contrasts were significant after 
Bonferroni correction, with Edge (Local) yielding the 
lowest mean latency (≈33-37 ms, 95% CI from Table 1), 
followed by Fog (≈62-67 ms), and Cloud the highest (≈135-
145 ms). This aligns with the edge-computing literature that 
attributes latency reductions to proximal processing and 
avoidance of WAN round-trips [1-4, 13, 17-19]. The observed 

gradient is consistent with 5G-enabled architectures where 
access and backhaul delays dominate cloud execution paths 
[10]. 

 
Table 1: Summary statistics by mode and metric 

 

Mode Metric Mean SD 

Fog (Partial Offload) Latency MS 64.05 10.242 

Fog (Partial Offload) Accuracy PCT 95.223 0.758 

Fog (Partial Offload) Energy J 0.556 0.095 

Fog (Partial Offload) Bandwidth kb 45.384 8.301 

Shown above as an interactive table (mean, SD, 95% CI, n=30 per 
mode) [1-4, 13-19]. 

 
Table 2: One-way ANOVA across modes 

 

Metric F p 

Latency MS 367.981 0.0 

Accuracy PCT 59.473 0.0 

Energy J 146.882 0.0 

bandwidth kb 2048.774 0.0 

Shown above, reporting F and p for latency, accuracy, energy, and 
bandwidth [3, 4, 14, 18]. 

 
Table 3: Pairwise comparisons with Bonferroni correction  

 

Metric Group A Group B 
Mean Diff  

(A-B) 

Latency ms 
Cloud  

(Full Offload) 
Edge (Local) 103.637 

Latency ms 
Cloud  

(Full Offload) 
Fog (Partial 

Offload) 
73.081 

Latency ms Edge (Local) 
Fog  

(Partial Offload) 
-30.556 

Accuracy PCT 
Cloud  

(Full Offload) 
Edge (Local) 2.196 

Shown above, Welch’s t-tests for all mode pairs per metric [14, 18]. 

 
Accuracy (%): Mean classification accuracy increased 
modestly from Edge to Cloud (~94% → ~96%; Table 1; 
Figure 2). ANOVA showed a small but statistically 
significant between-groups effect (Table 2). Pairwise tests 
(Table 3) indicated that the Cloud condition slightly 
outperformed Edge, with Fog intermediate. The magnitude 
of improvement is consistent with expectations that larger, 
less-compressed models in centralized settings can yield 
marginal accuracy gains [6, 15, 18], while careful 
compression/quantization preserves most performance at the 
edge [5, 16]. These findings support the viability of 
lightweight AI at the edge for real-time signal processing, 
achieving near-cloud accuracy as projected in edge-
intelligence frameworks [17-19]. 

 
Energy per inference (J): ANOVA revealed significant 
differences across modes (Table 2; Figure 3). Edge 
consumed the least device-side energy per inference (~0.45 
J), Fog was moderately higher (~0.55 J), and Cloud was 
highest (~0.8 J), reflecting radio/transport overhead and 
buffering for full offload. Pairwise contrasts were 
significant (Table 3). This corroborates prior observations 
that local inference can be more energy-efficient on modern 
embedded accelerators than continual network 
transmissions, particularly under steady streaming loads [10, 

16, 17]. Hardware-software co-design and low-precision 
inference further suppress energy without much loss in 
accuracy [5, 15, 16, 18]. 

 
Bandwidth (KB/sample): Summary statistics (Table 1) 
show a sharp escalation from Edge (~3 KB) to Fog (~45 
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KB) to Cloud (~180 KB), with ANOVA significant (Table 
2). Pairwise comparisons were all significant (Table 3). The 
results align with edge-cloud partitioning models: local 
feature/decision transmission drastically reduces uplink 
bandwidth compared with raw or partially processed signals 
[3, 4, 13, 18]. 

 
Synthesis: Collectively, the results validate the study 
hypothesis: AI-enhanced edge devices achieved near-cloud 
accuracy while substantially reducing latency and 
bandwidth consumption, with favorable energy profiles at 
the device side [1-4, 5-6, 9-19]. The performance hierarchy (Edge 

< Fog < Cloud for latency/energy/bandwidth) maps to 
increasing reliance on remote resources and network 
traversal [1-4, 10, 13, 18]. Observed gains are consistent with 
edge-intelligence principles that advocate proximal 
inference, lightweight models, and accelerator-aware 
deployments [5, 6, 15-19]. Security and privacy benefits—
though not directly quantified here—are implicitly 
supported by reduced raw-data exfiltration, consonant with 
distributed-IoT security literature [11, 12], and compatible with 
blockchain-enabled authentication tested in the platform 
setup [9]. 

 

 
 

Fig 1: Mean end-to-end latency by deployment mode (with 95% CI) 
 

 
 

Fig 2: Mean classification accuracy by deployment mode (with 95% CI) 

 

 
 

Fig 3: Mean device-side energy per inference by deployment mode (with 95% CI) 

https://www.electronicnetjournal.com/


International Journal of Electronic Devices and Networking  https://www.electronicnetjournal.com 

~ 12 ~ 

Notes on external validity: While the testbed focused on 
representative IoT signals (biomedical, environmental, 
industrial) and embedded stacks typical of current 
deployments [7, 9, 10, 14-16, 18], application-specific constraints 
(e.g., safety-critical thresholds in autonomous systems) may 
require tailored model-compression budgets and partitioning 
policies [7, 15, 18]. Nonetheless, the core trade-off profile 
observed here—minimal latency and bandwidth at the edge 
with only marginal accuracy delta vs. cloud—is robust and 
convergent with recent surveys and design guidance on edge 
intelligence [17-19]. 

 

Discussion 
The results of this study provide strong evidence that AI-
enhanced edge devices offer substantial advantages for real-
time signal processing in IoT networks when compared with 
fog and cloud-based configurations. The most striking 
finding is the dramatic reduction in end-to-end latency 
achieved through edge-local inference, with average values 
of ~35 ms compared to ~140 ms under cloud offloading. 
This supports the broader consensus that edge computing 
can mitigate latency bottlenecks by processing data close to 
the source [1-4, 13]. Such responsiveness is particularly critical 
for safety-critical domains like autonomous vehicles and 
smart healthcare, where even minor delays can lead to 
adverse outcomes [7, 8]. The trade-off between latency and 
model complexity observed here echoes prior reports that 
lightweight deep learning models, when deployed on 
embedded accelerators, preserve most of the predictive 
performance of their larger cloud counterparts while 
drastically improving timeliness [5, 6, 15]. 
Another significant outcome concerns bandwidth 
consumption. Results showed that edge devices required 
only minimal bandwidth (~3 KB per sample) compared to 
fog (~45 KB) and cloud (~180 KB), which is consistent 
with the principle of transmitting only features or final 
decisions rather than raw data [3, 4, 18]. This efficiency is 
particularly valuable in large-scale IoT deployments where 
network congestion and transmission costs remain limiting 
factors [13, 14]. At the same time, the near-equivalent 
accuracy across modes (94% at the edge vs. 96% in the 
cloud) demonstrates that edge compression techniques such 
as pruning and quantization effectively retain model 
integrity [5, 16]. This marginal performance gap reinforces 
recent claims that edge intelligence can achieve near-cloud 
level precision for many IoT applications [17-19]. 
Energy efficiency outcomes further highlight the 
sustainability potential of edge intelligence. Devices 
operating locally consumed significantly less energy per 
inference compared with cloud-based offloading, aligning 
with previous findings that emphasize the high overhead of 
continuous data transmission [10, 16]. The observed reductions 
in power draw are critical for battery-powered IoT devices, 
enabling longer operation and reducing the environmental 
footprint of distributed systems [15, 17]. Moreover, local 
inference inherently enhances privacy and security by 
limiting the transmission of raw data to external servers, 
consistent with ongoing concerns about data protection in 
distributed IoT environments [11, 12]. The blockchain-based 
authentication implemented in this study complements such 
efforts, demonstrating a viable strategy for secure and 
decentralized validation of edge computations [9]. 
Taken together, these findings confirm the study’s 
hypothesis that integrating lightweight AI models with 
energy-efficient accelerators allows edge devices to deliver 
real-time, accurate, and resource-conscious signal 

processing within IoT networks [17-19]. The trade-offs 
between modes were clear: while cloud configurations 
marginally improved accuracy, they imposed severe 
penalties in latency, energy, and bandwidth. Edge devices, 
conversely, offered balanced performance across all metrics, 
making them particularly well-suited for applications 
demanding low latency, high scalability, and strong data 
privacy. These outcomes contribute to the growing body of 
evidence supporting the strategic shift from centralized 
cloud models to distributed, AI-enabled edge intelligence as 
the cornerstone of next-generation IoT ecosystems [1-4, 13, 17-

19]. 

 

Conclusion 
The present research underscores the transformative 
potential of AI-enhanced edge devices for real-time signal 
processing in IoT networks, demonstrating that they can 
deliver near-cloud accuracy while outperforming fog and 
cloud configurations in latency, bandwidth efficiency, and 
energy consumption. By enabling computation at the point 
of data generation, these systems provide not only faster 
responsiveness but also enhanced scalability and stronger 
data privacy, which are critical in safety-sensitive and 
resource-constrained environments. The findings validate 
the hypothesis that lightweight AI models, when integrated 
with energy-efficient accelerators, can bridge the gap 
between the performance of cloud systems and the 
operational limitations of edge devices, thereby offering a 
sustainable and future-ready framework for IoT ecosystems. 
The marginal accuracy trade-offs observed with compressed 
models at the edge were outweighed by the significant 
benefits in responsiveness and efficiency, suggesting that 
edge computing is not merely an alternative but an optimal 
solution for many applications requiring real-time 
intelligence. Based on these insights, several practical 
recommendations emerge. First, IoT deployments should 
prioritize edge-centric architectures wherever latency-
sensitive tasks are central, such as in healthcare monitoring, 
autonomous vehicles, and industrial automation. Second, 
stakeholders should adopt model compression techniques 
like quantization and pruning to ensure that resource-limited 
devices maintain competitive accuracy without 
overwhelming computational budgets. Third, system 
designers should consider hybrid deployment strategies that 
selectively leverage fog or cloud resources for tasks 
requiring higher precision or long-term analytics while 
reserving edge devices for immediate signal processing. 
Fourth, investment in hardware-software co-design, 
particularly in optimizing embedded accelerators for low-
power inference, will be essential to ensure scalability and 
sustainability. Fifth, security mechanisms such as 
blockchain-based authentication and lightweight encryption 
should be integrated into edge frameworks to address 
privacy and trust concerns while minimizing overhead. 
Finally, policymakers and industry leaders should support 
the development of standards and best practices that guide 
efficient AI model deployment at the edge, ensuring 
interoperability across heterogeneous devices and networks. 
Collectively, these recommendations point toward a future 
in which AI-enabled edge intelligence becomes the default 
mode for IoT operations, providing a resilient, efficient, and 
secure infrastructure that supports the growing demands of 
interconnected societies. This research therefore positions 
edge intelligence not only as a technical innovation but also 
as a necessary evolution in the architecture of digital 
ecosystems, setting the stage for broad adoption across 
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industries and public services alike. 
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