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Abstract

Audio signal quality degradation due to background noise remains a persistent challenge across
communication, broadcasting, and recording industries. This research presents a spectral subtraction
approach for noise reduction utilizing the Discrete Fourier Transform to separate noise components
from desired audio content in the frequency domain [, The methodology transforms time-domain
signals into frequency representations where noise characteristics can be estimated during speech
pauses and subsequently subtracted from the composite spectrum. Implementation employed 2048-
point DFT windows with 50% overlap and Hann windowing to minimize spectral leakage effects 2.
Testing across six distinct noise types revealed signal-to-noise ratio improvements ranging from 8.4 dB
for impulsive noise to 29.4 dB for periodic hum contamination at 50/60 Hz power line frequencies.
Processing efficiency achieved real-time capability on standard computing hardware, requiring only
12.4 ms to process one second of audio using optimized radix-2 FFT algorithms 21, Perceptual quality
evaluation using PESQ and STOI metrics confirmed that the noise reduction maintained speech
intelligibility above 82% while achieving artifact suppression scores exceeding 71%. The spectral
flooring technique with B = 0.02 effectively prevented musical noise artifacts that commonly plague
spectral subtraction methods [. Comparative analysis against Wiener filtering demonstrated
competitive performance with 23% lower computational requirements, making the DFT-based
approach suitable for resource-constrained embedded applications. The research establishes practical
guidelines for parameter selection based on noise characteristics and quality requirements 1,

Keywords: Discrete Fourier transform, noise reduction, spectral subtraction, audio signal processing,
speech enhancement, FFT algorithm, signal-to-noise ratio, real-time processing

Introduction

Every day, millions of audio recordings suffer from unwanted background noise that
compromises their utility and listening experience. From conference calls disrupted by air
conditioning rumble to podcast recordings marred by traffic sounds, the problem of audio
noise affects virtually every application involving sound capture 1. While sophisticated
neural network approaches have emerged in recent years, classical signal processing methods
based on the Discrete Fourier Transform continue to offer compelling advantages in
computational efficiency and predictable behavior.

The fundamental principle underlying frequency-domain noise reduction exploits the
different spectral characteristics of desired signals versus noise. Speech and music exhibit
structured harmonic patterns concentrated at specific frequencies, while many noise types
spread energy more uniformly across the spectrum 7). By analyzing signals in the frequency
domain through DFT computation, algorithms can selectively attenuate frequency bins
dominated by noise while preserving bins containing primarily signal content.

Spectral subtraction, pioneered by Boll in 1979, remains one of the most widely deployed
noise reduction techniques due to its conceptual simplicity and computational tractability [,
The method estimates noise spectrum during signal-absent periods, then subtracts this
estimate from subsequent frames to isolate the desired signal. Despite its age, ongoing
refinements continue improving performance while maintaining the fundamental algorithmic
framework.

Recent research has explored numerous enhancements to basic spectral subtraction. Work by
Martin introduced improved noise estimation using minimum statistics tracking [,
Investigation by Cohen developed optimally modified log-spectral amplitude estimators that
reduce musical noise artifacts ', Research by Loizou examined perceptual modifications
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that weight spectral components according to auditory
importance M. These advances collectively demonstrate
continued relevance of DFT-based methods despite
competition from machine learning approaches.

The present research contributes a systematic evaluation of
DFT-based noise reduction across diverse noise types and
operating conditions. Rather than proposing novel
algorithms, the investigation focuses on establishing
practical guidelines for parameter selection and performance
expectations. Such guidance proves valuable for
practitioners implementing noise reduction in real-world
applications where computational resources and latency
constraints influence method selection (221,

Implementation considerations receive particular attention,
recognizing that theoretical performance means little
without efficient realization. The research examines
tradeoffs between DFT window size, overlap percentage,
and resulting quality and latency characteristics. Processing
time measurements on representative hardware establish
feasibility for real-time applications including live
streaming and telecommunications.

Material and Methods

Material: The research was conducted at the Signal
Processing Laboratory of Taipei Institute of Technology
from July 2023 through November 2023. Audio processing
software was developed in Python 3.10 utilizing NumPy
1.23 for numerical operations and SciPy 1.9 for signal
processing functions. Testing employed a workstation with
Intel Core i7-12700K processor, 32GB DDR5 RAM, and
Ubuntu 22.04 operating system [131,

Test audio comprised 200 speech samples from the TIMIT
database representing diverse speakers and phonetic content.
Noise signals included six categories: white Gaussian noise,
pink (1/f) noise, 50/60 Hz power line hum, broadband
environmental noise recorded in office settings, impulsive
noise from keyboard clicks and door closures, and urban
environmental noise from traffic recordings. All audio was
sampled at 16 kHz with 16-bit resolution following
telecommunications standards 4],

Methods: The noise reduction pipeline began with frame
segmentation dividing continuous audio into overlapping
blocks of N = 2048 samples (128 ms at 16 kHz). Adjacent
frames overlapped by 50% to enable smooth reconstruction
through overlap-add synthesis. Each frame was multiplied
by a Hann window function to reduce spectral leakage from
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finite-length  truncation effects inherent in DFT
computation.

DFT computation employed the radix-2 Cooley-Tukey FFT
algorithm achieving O (N log N) complexity compared to O
(N?) for direct DFT evaluation. The resulting complex
spectrum separated into magnitude and phase components.
Noise spectrum estimation used minimum statistics tracking
over 1.5 second windows, identifying the lowest spectral

values as representative of noise-only content 1,

System Design

The software architecture employed a modular pipeline
design  separating distinct processing stages for
maintainability and optimization flexibility. The Audio
Processor class orchestrates frame management, while
dedicated Noise Estimator and Spectral Subtractor classes
handle their respective functions. A configuration system
enables runtime parameter adjustment without code
modification, facilitating systematic evaluation across
parameter combinations.

Memory management utilizes circular buffers for streaming
operation, maintaining only the frames necessary for current
processing plus overlap history. This approach bounds
memory consumption independent of total audio duration,
enabling processing of arbitrarily long streams. Buffer sizes
were configured to accommodate maximum expected
latency of 256 ms while minimizing memory footprint to
approximately 2 MB for stereo audio processing 61,

Implementation Details

FFT computation leveraged FFTW library bindings through
pyfftw package, achieving 3.2x speedup compared to
NumPy's default FFT implementation. Wisdom caching
enabled automatic selection of optimal FFT algorithms for
the specific transform size and hardware configuration.
SIMD vectorization through NumPy's underlying BLAS
routines accelerated element-wise spectral operations.
Spectral subtraction applied the over-subtraction factor a =
2.0 and spectral floor B = 0.02 based on preliminary
optimization experiments. The modified magnitude
spectrum was computed as max ([X]2 - a/N]%, B|X[*)"0.5,
where |X| represents noisy magnitude, |N| represents
estimated noise magnitude. Phase information from the
original noisy signal was preserved and combined with the
modified magnitude for inverse DFT reconstruction 2],

Results

Table 1: SNR improvement and perceptual quality metrics across noise types

Noise Type ASNR (dB) PESQ STOI (%) Avrtifact
White Noise 16.3+1.2 3.12 84.7 Low
Pink Noise 14.9+1.4 3.08 82.3 Low
Hum (50/60 Hz) 29.4+0.8 3.67 94.2 Minimal
Broadband 15.2+1.6 2.98 81.6 Moderate
Impulse 8.4+2.1 2.71 76.8 Moderate
Environmental 18.7+1.8 3.24 86.4 Low

ASNR: SNR improvement; PESQ: Perceptual Evaluation of Speech Quality (scale 1-4.5); STOI: Short-Time Objective Intelligibility.

The heatmap in Figure 1 reveals distinct performance
patterns across noise types and DFT configurations. Hum
noise shows dramatic improvement (up to 29.4 dB) due to
its narrow spectral concentration enabling precise
frequency-domain targeting. Impulse noise demonstrates the

lowest improvement because its energy spreads broadly in
the frequency domain following time-domain localization,
reducing the effectiveness of spectral subtraction
approaches.
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DFT Points
256 512 1024 2048 4096 8192
SNR Gain (dB)
White Noise 8.2 114 147 163 171 17.4 30
Pink Noise 6.8 9.7 128 14.9 15.8 16.1
20
e 12‘3 “ n n n
10
Broadband 7.4 10.2 131 15.2 16.0 16.3
L 14
Impulse 4.2 5.8 7.3 81 84 85
Environmental 9.1 12.8 164
Key Findings:
« Hum noise shows highest improvement (up to 29.4 dB) due to narrow frequency band
+ Impulse noise shows lowest improvement due to ime-domain spreading in DFT

Fig 1: Heat map showing SNR improvement in dB as function of noise type and DFT window size

B Real-time Processing [l Batch Processing

120

112.3

Processing Time (ms per 1s audio)

Time
Domain

DFT
(radix-2)

EFT

(optimized)

Spectral
subtraction

Whener

Add Filer

Fig 2: Processing time comparison across noise reduction methods for one second of audio

Computational efficiency analysis in Figure 2 confirms the
advantage of FFT-optimized processing. The optimized FFT
implementation achieved 12.4 ms processing time per
second of audio, representing 80x real-time capability.
Time-domain approaches required 112.3 ms, while Wiener
filtering consumed 31.2 ms 2.5x slower than spectral
subtraction with comparable quality outcomes.

Comprehensive Interpretation

The quality comparison in Figure 4 contextualizes DFT-
based methods against alternatives. While neural network
approaches achieve superior scores across all metrics, they
require specialized hardware (GPU) and substantially
greater computational resources. The DFT method achieves
87-95% of neural network performance while requiring only
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14% of the processing time on standard CPU hardware,
establishing favorable efficiency-quality tradeoffs for
resource-constrained deployments.

Discussion

The experimental results validate DFT-based spectral
subtraction as an effective noise reduction approach for
many practical applications. The observed SNR
improvements of 8-29 dB across noise types align with
theoretical expectations based on spectral characteristics of
each noise category. Narrowband noise like power line hum
proves most amenable to frequency-domain suppression,
while temporally localized impulse noise presents greater
challenges.
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Audio Frame Windowing DFT Magnitude Noise
Input Segmentation (Hann) Computation Spectrum Estimate
N =2048 Hann window Radix-2 FFT
50% overlap a=05 O(Nlog N)
Audio Overlap- IDFT Phase Spectral Spectral
Output Add ‘Computation Preservation Flooring Subtraction

p=002
(floor factor)

a=20
(over-subtraction)

Key Equations:

DFT: X[kl = £ x{n] - e*-j2rkn/N) fork=0, 1, ..., N-1 n=0toN-1
Spectral Subtraction: |S[K]|* = max(IX[K]E - alNKIE, BIX[KII?)

Output: §[n] = IDFT{ISK]| - e*(o[kD} where o[k} = ZX[K]

SNR Improvement: ASNR = 10-log:o(P_signal / P_residual_noise)

Fig 3: DFT-based noise reduction processing pipeline showing signal flow and key parameters
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Fig 4: Normalized quality metric comparison between DFT-based, Wiener filtering, and neural network methods

The spectral flooring technique successfully mitigated
musical noise artifacts that historically limited spectral
subtraction acceptability. The B = 0.02 floor prevents
complete elimination of spectral bins, maintaining a residual
noise floor that masks the isolated spectral peaks
responsible for musical noise perception. This tradeoff
between maximum noise reduction and artifact avoidance
requires application-specific optimization.

Window size selection emerged as a critical parameter
influencing both quality and latency. Larger windows
(4096-8192 points) provided marginally better SNR
improvement but increased algorithmic latency to 256-512
ms, potentially problematic for interactive applications. The
selected 2048-point window balanced 128 ms latency
against near-optimal quality for most noise types, though
applications tolerant of higher latency may benefit from
larger windows.

Comparison with Wiener filtering revealed competitive
performance with computational advantages. Both methods
operate in the frequency domain with similar theoretical
foundations, but spectral subtraction's simpler formulation
enables more efficient implementation. The 23% processing
time reduction relative to Wiener filtering may prove
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decisive for battery-powered mobile devices or high-
channel-count applications.

Cost Analysis

Economic evaluation considered both development and
deployment costs for the proposed noise reduction system.
Software development required approximately 320 person-
hours, valued at approximately 192,000 TWD (New Taiwan
dollars) based on regional engineering rates. All utilized
libraries maintain permissive open-source licenses (BSD,
MIT) without royalty obligations, contrasting favorably with
commercial audio processing SDKs typically priced at
30,000-150,000 TWD annually.

Deployment cost analysis for embedded applications
estimated hardware requirements at entry-level ARM
Cortex-A processors (approximately 150 TWD per unit)
versus GPU requirements for neural approaches
(approximately 3,000-15,000 TWD per unit). For volume
deployments of 10,000 units, the DFT-based approach saves
approximately 28-148 million TWD in hardware costs while
achieving acceptable quality metrics for most consumer
applications.
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Conclusion

This research has demonstrated effective noise reduction in
audio signals using Discrete Fourier Transform based
spectral subtraction methods. Systematic evaluation across
six noise categories established performance expectations
ranging from 8.4 dB improvement for impulsive noise to
29.4 dB for periodic hum contamination. These results
confirm that frequency-domain characteristics of different
noise types fundamentally determine achievable suppression
levels.

Computational efficiency measurements validated real-time
capability on standard computing hardware without
specialized accelerators. The optimized FFT implementation
processed audio 80x faster than real-time, enabling
deployment in latency-sensitive applications including live
streaming and telecommunications. Memory requirements
remained bounded at approximately 2 MB regardless of
stream duration, supporting embedded system deployment.
Perceptual quality evaluation using PESQ and STOI metrics
confirmed that noise reduction maintained speech
intelligibility above 76% even for challenging impulse
noise, with most noise types achieving 82-94%
intelligibility preservation. The spectral flooring technique
successfully controlled musical noise artifacts that
historically limited spectral subtraction applicability,
achieving artifact ratings of "Low" or "Minimal” for five of
six tested noise categories.

Comparative analysis positioned DFT-based methods
favorably against both traditional Wiener filtering and
contemporary neural network approaches. The 23%
computational advantage over Wiener filtering with
comparable quality makes spectral subtraction attractive for
resource-constrained platforms. While neural methods
achieved superior quality metrics, the 7x computational
penalty may not justify the improvement for cost-sensitive
or battery-powered applications.

Future research directions include adaptive parameter
selection based on automatic noise type classification and
exploration of hybrid approaches combining classical signal
processing with lightweight neural networks. The
established framework provides a foundation for such
extensions while maintaining the computational efficiency
advantages demonstrated in this investigation.
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