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Abstract 
Digital image quality frequently suffers from noise contamination introduced during acquisition, 

transmission, or storage processes, necessitating effective enhancement techniques for downstream 

applications in medical imaging, remote sensing, and industrial inspection. This research presents 

systematic evaluation of fundamental spatial filtering methods for two-dimensional image 

enhancement, comparing mean, Gaussian, median, and bilateral filters across standardised test 

conditions [1]. The investigation employed 200 test images from established benchmark datasets 

corrupted with additive white Gaussian noise at three intensity levels (σ = 15, 25, and 40) to simulate 

realistic degradation scenarios. Peak signal-to-noise ratio measurements demonstrated that bilateral 

filtering achieved superior performance with mean PSNR of 31.4 dB at low noise levels, compared to 

30.1 dB for median filtering and 29.2 dB for Gaussian filtering [2]. Structural similarity index analysis 

revealed the critical trade-off between noise reduction and edge preservation, with bilateral filters 

maintaining SSIM values above 0.85 across all tested kernel sizes whilst mean filters degraded to 0.42 

at 15×15 kernel dimensions. Processing speed measurements showed mean filtering achieving 0.8 ms 

per megapixel compared to 12.4 ms for bilateral filtering, establishing the computational cost of edge-

preserving enhancement [3]. Multi-metric radar analysis combining PSNR, SSIM, edge preservation, 

processing speed, noise reduction, and artifact suppression revealed that no single filter dominates 

across all criteria, necessitating application-specific selection. The research provides quantitative 

guidelines for filter selection based on noise characteristics, computational constraints, and quality 

requirements applicable to practical image processing workflows [4]. Validation using independent test 

sets confirmed generalisability of findings across diverse image content including natural scenes, 

medical imagery, and synthetic patterns [5]. 

 

Keywords: Spatial filtering, image enhancement, noise reduction, PSNR, SSIM, median filter, bilateral 

filter, edge preservation, digital image processing 
 

Introduction 
Consider the challenge facing a radiologist examining a chest X-ray degraded by quantum 

noise, or an agricultural scientist analysing satellite imagery obscured by atmospheric 

interference. In both cases, the fundamental information exists within the image but remains 

partially hidden by unwanted signal contamination [6]. Spatial filtering techniques offer direct 

approaches to reveal this hidden information by selectively suppressing noise whilst 

preserving meaningful image content. 

The theoretical foundation of spatial filtering rests on the observation that natural images 

exhibit local correlation neighbouring pixels typically share similar values whilst noise 

manifests as uncorrelated random variation. By computing weighted averages or statistical 

measures within local neighbourhoods, filters can distinguish between coherent image 

structure and random noise fluctuations [7]. This elegant principle underlies the entire family 

of spatial domain enhancement techniques examined in this research. 

Mean filtering represents the simplest spatial approach, replacing each pixel with the 

arithmetic average of its neighbours. Whilst computationally efficient, this uniform 

averaging inevitably blurs edges and fine details along with the noise. Gaussian filtering 

improves upon this by weighting contributions according to spatial distance, giving greater 

influence to nearby pixels whilst still smoothing across boundaries [8]. 

Median filtering takes a fundamentally different approach, selecting the middle value from 

the sorted neighbourhood rather than computing an average. This non-linear operation 
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proves remarkably effective against impulsive noise such as 

salt-and-pepper contamination, where averaging-based 

methods struggle [9]. The edge-preserving property of 

median filters makes them valuable for applications where 

boundary integrity proves critical. 

Bilateral filtering extends spatial weighting with an 

additional intensity-based component, reducing 

contributions from pixels that differ significantly in value 

from the central pixel regardless of their spatial proximity 
[10]. This sophisticated approach achieves superior edge 

preservation but incurs substantially greater computational 

cost. Understanding these trade-offs enables informed filter 

selection for specific applications. 

The present research contributes systematic quantitative 

comparison of these fundamental filtering approaches using 

standardised evaluation methodology. Rather than 

proposing novel algorithms, the investigation establishes 

reliable performance benchmarks that enable practitioners to 

select appropriate filters based on objective criteria 

including noise reduction capability, edge preservation, 

computational efficiency, and artifact generation [11]. 

 

Material and Methods 
Material: The research was conducted at the Image 

Processing Laboratory of Kuala Lumpur Technical 

University from August 2023 through December 2023. 

Algorithm implementation utilised Python 3.10 with 

OpenCV 4.7 and NumPy 1.24 libraries. Processing 

employed a workstation featuring AMD Ryzen 9 5900X 

processor (12 cores, 3.7 GHz base frequency), 64 GB DDR4 

RAM, and Ubuntu 22.04 operating system [12]. 

Test images comprised 200 samples from three established 

benchmark datasets: BSD500 (natural scenes), DRIVE 

(retinal medical images), and USC-SIPI (synthetic patterns). 

Images were converted to 8-bit grayscale and resized to 

512×512 pixels to ensure consistent computational loading 

across tests. Ground truth images were retained for objective 

quality assessment through full-reference metrics [13]. 

 

Instrumentation and Equipment 
Noise generation employed the Mersenne Twister 

pseudorandom number generator seeded from /dev/urandom 

to ensure statistical independence across experimental runs. 

Additive white Gaussian noise was synthesised with 

precisely controlled standard deviation values of σ = 15, 25, 

and 40 grey levels, verified through histogram analysis of 

difference images against theoretical normal distributions. 

Timing measurements utilised the Python time. 

perf_counter_ns() function providing nanosecond resolution 

with minimal system call overhead. Each timing 

measurement averaged 100 repetitions to mitigate operating 

system scheduling variability. CPU frequency scaling was 

disabled during benchmarking to ensure consistent 

processor performance across all measurements [14]. 

Display verification employed an EIZO ColorEdge CG2730 

monitor calibrated to sRGB colour space with verified 

gamma of 2.2±0.02 and white point of 6500K±100K. Whilst 

objective metrics drove quantitative conclusions, calibrated 

display enabled visual verification of processed images for 

artifact assessment and subjective quality confirmation. 

 

Methods 

Filter implementations followed standard formulations from 

the literature. Mean filtering computed uniform 

neighbourhood averages with kernel sizes of 3×3, 5×5, 7×7, 

9×9, 11×11, 13×13, and 15×15 pixels. Gaussian filtering 

applied normalised Gaussian kernels with σ scaled 

proportionally to kernel size (σ = 0.3×(size-1)×0.5 + 0.8). 

Median filtering sorted neighbourhood values and selected 

the central element. Bilateral filtering combined spatial 

Gaussian (σs = kernel_size/6) with intensity Gaussian (σr = 

25 grey levels). 

Quality metrics included Peak Signal-to-Noise Ratio 

(PSNR) computed as 10×log₁₀ (255²/MSE), Structural 

Similarity Index (SSIM) following the original Wang 

formulation with default parameters (K₁=0.01, K₂=0.03), 

and edge preservation ratio measured through Sobel 

gradient correlation between original and filtered images [15]. 

 

Quality Control and Calibration 
Algorithm verification employed reference implementations 

from scikit-image library, confirming agreement within 

floating-point precision (< 10⁻⁶ relative error) for all filter 

types. This cross-validation ensured that observed 

performance differences reflected genuine filter 

characteristics rather than implementation artifacts. 

Statistical significance testing employed paired t-tests with 

Bonferroni correction for multiple comparisons, establishing 

significance threshold at p<0.01/n for n pairwise 

comparisons. Effect sizes were computed using Cohen's d to 

distinguish statistically significant but practically negligible 

differences from meaningful performance gaps. Confidence 

intervals (95%) were computed for all reported metrics 

using bootstrap resampling with 10,000 iterations [16]. 

 

Results 

 
Table 1: Filter performance comparison at medium noise level (σ = 25) 

 

Filter Type PSNR (dB) SSIM Edge Pres. Time (ms) 

Noisy (baseline) 18.7±0.3 0.48±0.04 1.00 — 

Mean 3×3 24.3±0.8 0.72±0.03 0.68 0.8 

Gaussian 3×3 25.8±0.7 0.78±0.03 0.74 1.2 

Median 3×3 27.4±0.6 0.85±0.02 0.86 3.4 

Bilateral 28.9±0.5 0.89±0.02 0.94 12.4 

Values represent mean ±standard deviation across 200 test images. Time measured per megapixel. 

 

The PSNR comparison in Figure 1 demonstrates consistent 

performance ranking across all noise levels. Bilateral 

filtering achieved highest PSNR at every condition, with the 

advantage increasing at higher noise levels (2.0 dB 

improvement over median at σ = 15, increasing to 2.4 dB at 

σ = 40). This suggests that edge-preserving filters benefit 

disproportionately when noise levels approach or exceed 

edge contrast magnitudes.
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Fig 1: PSNR comparison across filter types and noise levels showing bilateral filter superiority at all conditions 
 

 
 

Fig 2: SSIM degradation with increasing kernel size demonstrating structural preservation differences among filter types 
 

The kernel size analysis in Figure 2 reveals the critical 

importance of appropriate filter sizing. Mean filtering shows 

steepest SSIM decline, losing 0.40 SSIM points from 3×3 to 

15×15 kernel. Bilateral filtering demonstrates superior 

resilience, losing only 0.15 SSIM points across the same 

range. This confirms that larger kernels, whilst providing 

greater noise suppression, impose severe structural penalties 

for averaging-based methods. 

 

Comprehensive Interpretation: The radar comparison in 

Figure 4 reveals that no single filter dominates across all 

evaluation criteria. Bilateral filtering excels in PSNR, SSIM, 

edge preservation, and artifact suppression but suffers 

dramatically in processing speed. Mean filtering provides 

fastest execution but poorest structural preservation. Median 

filtering offers balanced performance strong noise reduction 

and edge preservation with moderate computational cost 

making it an attractive default choice for many applications. 

 

Discussion 
The experimental results confirm theoretical expectations 

regarding spatial filter behaviour whilst providing 

quantitative benchmarks for practical application. The 

consistent superiority of bilateral filtering in quality metrics 

validates the edge-preserving design principle, 

demonstrating that incorporating intensity similarity into the 

weighting function yields substantial improvements for 

natural images containing meaningful boundaries. 
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Fig 3: Image enhancement processing pipeline showing iterative parameter optimisation feedback loop 

 

 
 

Fig 4: Multi-metric radar comparison showing trade-offs between filter performance characteristics 

 

The 15× computational penalty of bilateral versus mean 

filtering represents the primary barrier to broader adoption. 

Real-time applications processing video at 30 frames per 

second cannot accommodate 12.4 ms per megapixel when 

frame deadlines require processing complete frames within 

33 ms. Approximation algorithms such as bilateral grid and 

domain transform filters address this limitation but 

introduce their own trade-offs requiring separate evaluation 
[17]. 

Median filtering emerges as the pragmatic choice for many 

scenarios, achieving approximately 90% of bilateral 

filtering's quality metrics at 28% of the computational cost. 

Its particular effectiveness against impulsive noise not 

specifically tested in this research's Gaussian noise model 

further enhances its practical utility. The non-linear nature 

prevents direct Fourier analysis but empirical performance 

justifies widespread adoption. 

The kernel size analysis reveals that practitioners frequently 

err toward excessive filter dimensions. Beyond 5×5 for 

mean/Gaussian or 3×3 for median/bilateral filters, additional 

noise reduction comes at disproportionate structural cost. 

The SSIM degradation curves provide quantitative guidance 

for selecting kernel sizes that balance noise suppression 

against detail preservation based on application-specific 

requirements [18]. 

Dataset diversity proved essential for establishing 

generalisable conclusions. Initial experiments using only 

natural scene images showed stronger bilateral filter 

advantages than subsequently confirmed across medical and 

synthetic imagery. This observation underscores the 
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importance of representative test data spanning intended 

application domains when evaluating image processing 

algorithms. 

 
Limitations: The research focused exclusively on additive 
white Gaussian noise, which whilst theoretically tractable 
and commonly encountered, represents only one noise type 
among many affecting practical imaging systems. Poisson 
noise in low-light photography, speckle noise in ultrasound 
and radar imagery, and compression artifacts in transmitted 
images all exhibit different statistical characteristics 
requiring separate evaluation of filter effectiveness. 
Grayscale processing simplifies analysis but neglects 
colour-specific considerations. Extending filters to colour 
images introduces choices regarding processing in RGB 
versus perceptually uniform colour spaces, with significant 
impact on both quality and computational requirements. 
Colour channel correlation and cross-channel filtering 
effects remain beyond the present scope. 
Computational measurements reflect specific hardware and 
software configurations that may not generalise to other 
platforms. GPU implementations of all tested filters exist 
with dramatically different performance characteristics. 
Mobile and embedded deployments face additional 
constraints including memory bandwidth limitations and 
power consumption considerations not addressed in this 
desktop-focused evaluation. 

 
Conclusion: This research has provided comprehensive 
quantitative evaluation of fundamental spatial filtering 
techniques for two-dimensional image enhancement. 
Systematic comparison across 200 test images demonstrated 
that bilateral filtering achieves superior quality metrics with 
mean PSNR of 28.9 dB and SSIM of 0.89 at medium noise 
levels, compared to 27.4 dB and 0.85 for median filtering, 
establishing clear performance hierarchy among evaluated 
methods. 
The kernel size analysis revealed critical trade-offs between 
noise suppression and structural preservation. Mean 
filtering's SSIM degraded from 0.82 to 0.42 as kernel size 
increased from 3×3 to 15×15, whilst bilateral filtering 
maintained values above 0.76 across the same range. These 
findings provide quantitative guidance for kernel size 
selection based on application-specific quality requirements. 
Computational efficiency measurements established the 
practical cost of quality improvements. Bilateral filtering's 
12.4 ms per megapixel processing time represents 15× the 
cost of mean filtering, whilst median filtering achieves 
intermediate quality at 3.4 ms an attractive balance for many 
applications. These benchmarks enable informed algorithm 
selection considering both quality and computational 
constraints. 
Multi-metric analysis confirmed that no single filter 
dominates across all evaluation criteria, necessitating 
application-specific selection. The radar comparison 
methodology provides a template for holistic algorithm 
assessment that practitioners can adapt to their specific 
requirements by adjusting metric weights according to 
application priorities. 
Future research directions include extension to colour image 
processing, evaluation of fast bilateral filter approximations, 
and investigation of adaptive filter selection based on local 
image characteristics. The established benchmark 
methodology provides foundation for such extensions whilst 
current results serve immediate practical needs for 
practitioners selecting spatial filters for image enhancement 
applications. 
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